Interactive Exploration on Large Genomic Datasets.

نویسنده

  • Eric Tu
چکیده

The prevalence of large genomics datasets has made the the need to explore this data more important. Large sequencing projects like the 1000 Genomes Project [1], which reconstructed the genomes of 2,504 individuals sampled from 26 populations, have produced over 200TB of publically available data. Meanwhile, existing genomic visualization tools have been unable to scale with the growing amount of larger, more complex data. This difficulty is acute when viewing large regions (over 1 megabase, or 1,000,000 bases of DNA), or when concurrently viewing multiple samples of data. While genomic processing pipelines have shifted towards using distributed computing techniques, such as with ADAM [4], genomic visualization tools have not. In this work we present Mango, a scalable genome browser built on top of ADAM that can run both locally and on a cluster. Mango presents a combination of different optimizations that can be combined in a single application to drive novel genomic visualization techniques over terabytes of genomic data. By building visualization on top of a distributed processing pipeline, we can perform visualization queries over large regions that are not possible with current tools, and decrease the time for viewing large data sets. Mango is part of the Big Data Genomics project at University of California-Berkeley [25] and is published under the Apache 2 license. Mango is available at https://github.com/bigdatagenomics/mango.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GenoSets: Visual Analytic Methods for Comparative Genomics

Many important questions in biology are, fundamentally, comparative, and this extends to our analysis of a growing number of sequenced genomes. Existing genomic analysis tools are often organized around literal views of genomes as linear strings. Even when information is highly condensed, these views grow cumbersome as larger numbers of genomes are added. Data aggregation and summarization meth...

متن کامل

An Interactive Visualization Model for Large High-dimensional Datasets

Data visualization gives a direct view of complex data, which is especially helpful for analysis of large high dimensional datasets. However, existing methods often lose simplicity and clarity while rendering large amount of complex data. In this paper, we discuss some essential properties that a data visualization system should have. Also we present an interactive data visualization model whic...

متن کامل

AVIST: A GPU-Centric Design for Visual Exploration of Large Multidimensional Datasets

This paper presents the Animated VISualization Tool (AVIST), an exploration-oriented data visualization tool that enables rapidly exploring and filtering large time series multidimensional datasets. AVIST highlights interactive data exploration by revealing fine data details. This is achieved through the use of animation and cross-filtering interactions. To support interactive exploration of bi...

متن کامل

Phandango: an interactive viewer for bacterial population genomics

Summary Fully exploiting the wealth of data in current bacterial population genomics datasets requires synthesising and integrating different types of analysis across millions of base pairs in hundreds or thousands of isolates. Current approaches often use static representations of phylogenetic, epidemiological, statistical and evolutionary analysis results that are difficult to relate to one a...

متن کامل

Interacting with Large Distributed Datasets Using Sketch

We present Sketch, a library and a distributed runtime for building interactive tools for exploring large datasets, distributed across multiple machines. We have built several sophisticated applications using this framework; in this paper we describe a billion-row spreadsheet, and a distributed-systems performance analyzer. Sketch applications allow interactive and responsive exploration of com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EECS technical report series

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016